Total package: advancing AI
Typically artificial intelligence relies heavily on software and off-site data processing.
The new prototype aims to integrate electronic hardware and intelligence together, for fast on-site decisions.
“Imagine a dash cam in a car that’s integrated with our neuro-inspired hardware – this means it can recognise lights, signs, objects and make instant decisions, without having to connect to the internet,” Walia, who co-leads the Functional Materials and Microsystems Research Group at RMIT, said.
“By bringing it all together into one chip, we can deliver unprecedented levels of efficiency and speed in autonomous and AI-driven decision-making.”
The technology builds on an earlier prototype chip from the RMIT team, which used light to create and modify memories.
New built-in features mean the chip can now capture and automatically enhance images, classify numbers, and be trained to recognise patterns and images with an accuracy rate of over 90%.
The device is also readily compatible with existing electronics and silicon technologies, for effortless future integration.
Seeing the light: how the tech works
The prototype is inspired by optogenetics, an emerging tool in biotechnology that allows scientists to delve into the body’s electrical system with great precision and use light to manipulate neurons.
The AI chip is based on an ultra-thin material – black phosphorous - that changes electrical resistance in response to different wavelengths of light.
The different functionalities such as imaging or memory storage are achieved by shining different colours of light on the chip.
Study lead author Dr Taimur Ahmed, from RMIT, said light-based computing was faster, more accurate and required far less energy than existing technologies.
“By packing so much core functionality into one compact nanoscale device, we can broaden the horizons for machine learning and AI to be integrated into smaller applications,” Ahmed said.
“Using our chip with artificial retinas, for example, would enable scientists to miniaturise that emerging technology and improve accuracy of the bionic eye.
“Our prototype is a significant advance towards the ultimate in electronics: a brain-on-a-chip that can learn from its environment just like we do.”