The world is shifting from Big Data towards Long Data, which enables new insights to be discovered through the mining of massive datasets that capture changes in the real world over decades and centuries.
Lead author, Senior Research Fellow Dr Qiming Zhang from RMIT’s School of Science, said the new technology could expand horizons for research by helping to advance the rise of Long Data.
“Long Data offers an unprecedented opportunity for new discoveries in almost every field - from astrophysics to biology, social science to business - but we can’t unlock that potential without addressing the storage challenge,” Zhang said.
“For example, to study the mutation of just one human family tree, 8 terabytes of data is required to analyse the genomes across 10 generations. In astronomy, the Square Kilometre Array (SKA) radio telescope produces 576 petabytes of raw data per hour.
“Meanwhile the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to ‘map’ the human brain is handling data measured in yottabytes, or one trillion terabytes.
“These enormous amounts of data have to last over generations to be meaningful.
"Developing storage devices with both high capacity and long lifespan is essential, so we can realise the impact that research using Long Data can make in the world.”
The novel technique behind the technology - developed over five years - combines gold nanomaterials with a hybrid glass material that has outstanding mechanical strength.
The research progresses earlier groundbreaking work by Gu and his team that smashed through the seemingly unbreakable optical limit of blu-ray and enabled data to be stored across the full spectrum of visible light rays.
How it works
The researchers have demonstrated optical long data memory in a novel nanoplasmonic hybrid glass matrix, different to the conventional materials used in optical discs.
Glass is a highly durable material that can last up to 1000 years and can be used to hold data, but has limited storage capacity because of its inflexibility.
The team combined glass with an organic material, halving its lifespan but radically increasing capacity.
To create the nanoplasmonic hybrid glass matrix, gold nanorods were incorporated into a hybrid glass composite, known as organic modified ceramic.
The researchers chose gold because like glass, it is robust and highly durable. Gold nanoparticles allow information to be recorded in five dimensions – the three dimensions in space plus colour and polarisation.
The technique relies on a sol-gel process, which uses chemical precursors to produce ceramics and glasses with better purity and homogeneity than conventional processes.