Diabetes is one of the largest chronic health challenges globally.
Without taking any action, up to 70% of people with pre-diabetes can go on to develop Type 2 diabetes within the next four years, but with early interventions and lifestyle changes, the condition is largely preventable.
Integrated smart patch
Research Co-Director of RMIT’s Functional Materials and Microsystems Research Group, Professor Sharath Sriram, said the smart patch combined a complex sensing platform and stretchable electronics for improved conformity to skin.
The fabrication of sample collection will be led by Griffith University and Romar Engineering, with sensor integration and stretchable electronics fabrication undertaken at RMIT’s cutting-edge Micro Nano Research Facility.
Sriram said RMIT researchers would integrate the technologies in a prototype smart patch that could be cost-efficiently manufactured via roll-to-roll (R2R) printing and was designed with the end-user at front of mind.
“This smart patch is a significant evolution in wearable health monitoring technology,” he said.
“Current wearable technologies can track your heart rate and steps, but they can’t monitor your health at a molecular level.
“This new technology goes deeper, targeting the precise biomarkers that drive lifestyle-related diseases like Type 2 diabetes.”
Additive manufacturing challenge
The IMCRC funding is enabling a $6.9 million total project investment (cash and in-kind) into addressing the challenge of additive manufacturing and large-scale production of the smart patches.
David Chuter, CEO and Managing Director at the IMCRC, said the project would build Australia’s capability in medical technologies manufacturing and improve the competitiveness, productivity and sustainability of the advanced manufacturing sector.
“The manufacturing challenges addressed by this project will not only help deliver a low-cost, high-tech smart patch, but will also create technologies that are transferable to other Australian companies in the consumer and medical tech space,” Chuter said.
Professor Nam-Trung Nguyen, who is Director of the Queensland Micro- and Nanotechnology Centre at Griffith University, said the project was underpinned by the centre’s past and ongoing fundamental research in microfluidics and wearable, implantable microsystems.
“It is one of the research pillars at the Queensland Micro- and Nanotechnology Centre towards the commercialisation and translation of our discoveries for the benefit of end users,’’ he said.
“The project will benefit significantly from the recent addition of a femto second laser machining system funded by the ARC.”
Alan Lipman, CEO of Romar Engineering, an established manufacturer of medical devices, said collaboration was the way forward for Australian manufacturing.
“Working with entrepreneurs, academics and researchers to develop new medical technologies is essential to maintain Australia’s international competitiveness and to build a strong domestic manufacturing skills base.”
The device fabrication and manufacturing expertise will be rounded out with innovative healthcare business models developed at RMIT’s Health Transformation Lab with Professor Vishaal Kishore and Matiu Bush, and with user-centred healthcare design led RMIT’s Wearable Sensing Network Co-Chair Dr Leah Heiss.
The device could be adapted in future for other types of molecular-level health monitoring, including stress management, sleep health, sports performance and early stage viral detection.
Story: Gosia Kaszubska