Ultrasound can help make 3D-printed alloys stronger

Ultrasound can help make 3D-printed alloys stronger

Researchers have used sound vibrations to shake metal alloy grains into tighter formation during 3D printing.

A new study shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.

Carmelo Todaro and Ma Qian inspect a 3D printed Titanium alloy cube on the tip of an ultrasound rod. Carmelo Todaro and Ma Qian inspect a 3D printed Titanium alloy cube on the tip of an ultrasound rod.

Lead author and PhD candidate from RMIT University’s School of Engineering, Carmelo Todaro, said the promising results could inspire new forms of additive manufacturing.

“If you look at the microscopic structure of 3D printed alloys, they’re often made up of large and elongated crystals,” Todaro explained.

“This can make them less acceptable for engineering applications due to their lower mechanical performance and increased tendency to crack during printing.”

“But the microscopic structure of the alloys we applied ultrasound to during printing looked markedly different. The alloy crystals were very fine and fully equiaxed, meaning they had formed equally in all directions throughout the entire printed metal part.”

3D printed Titanium alloys under an electron microscope: sample on the left with large, elongated crystals was printed conventionally, while sample on the right with finer, shorter crystals was printed sitting on a ultrasonic generator. 3D printed Titanium alloys under an electron microscope: sample on the left with large, elongated crystals was printed conventionally, while sample on the right with finer, shorter crystals was printed sitting on a ultrasonic generator.

Testing showed these parts were also stronger: they had a 12% improvement in tensile strength and yield stress compared to those made through conventional additive manufacturing.

The team demonstrated their ultrasound approach using two major commercial grade alloys: a titanium alloy commonly used for aircraft parts and biomechanical implants, known as Ti-6Al-4V, and a nickel-based superalloy often used in marine and petroleum industries called Inconel 625.

By simply switching the ultrasonic generator on and off during printing, the team also showed how specific parts of a 3D printed object can be made with different microscopic structures and compositions, useful for what’s known as functional grading.

Visualisation of grain structure in 3D printed Inconel 625 achieved by turning the ultrasound on and off during printing. Visualisation of grain structure in 3D printed Inconel 625 achieved by turning the ultrasound on and off during printing.

Study co-author and project supervisor, RMIT’s Distinguished Professor Ma Qian, said he hoped their promising results would spark interest in specially designed ultrasound devices for metal 3D printing. 

“Although we used a titanium alloy and a nickel-based superalloy, we expect that the method can be applicable to other commercial metals, such as stainless steels, aluminium alloys and cobalt alloys,” Qian said. 

“We anticipate this technique can be scaled up to enable 3D printing of most industrially relevant metal alloys for higher‑performance structural parts or structurally graded alloys.”

The article ‘Grain structure control during metal 3D printing by high-intensity ultrasound’ is published in Nature Communications (DOI: 10.1038/s41467-019-13874-z).

This research was conducted at RMIT University’s Advanced Manufacturing Precinct and supported by an Australian Research Council Discovery Project grant.

Banner image: The 3D printer at RMIT where tests were conducted.

 

The complex challenges we face as a society call for shared solutions. Join local and international leaders across industry, research and innovation, as we identify collaborative opportunities to shape our future. Find out more at Engaging for Impact 2020 (4-6 February).

 

Story: Michael Quin

07 January 2020

Share

07 January 2020

Share

  • Advanced Manufacturing
  • Science and technology
  • Research
  • Aerospace & Aviation
  • Engineering

Related News

aboriginal flag
torres strait flag

Acknowledgement of Country

RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nation on whose unceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and present. RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business - Artwork 'Sentient' by Hollie Johnson, Gunaikurnai and Monero Ngarigo.