Her team have spent the past decade replicating these insects’ nanopillars in nanopatterns of their own, with this latest advance achieved using a technique called plasma etching to create the antibacterial and antifungal pattern in titanium.
Ivanova said the relatively simple etching technique could be optimised and applied to a wide range of materials and applications.
“This new surface modification technique could have potential applications in medical devices but could also be easily tweaked for dental applications or for other materials like stainless steel benches used in food production and agriculture,” she said.
Industry collaboration
Study lead author and joint PhD candidate with RMIT and the ARC Research Hub for Australian Steel Manufacturing, Phuc Le, said working closely with industry partner BlueScope Steel helped focus efforts to practical solutions for industry.
“Collaborating with industrial partners has been a transformative aspect of my PhD journey,” he said.
“Their first-hand insights as manufacturers have provided clarity on the challenges their products face and opened doors for me to research and devise practical solutions."
"While our studies are in the preliminary stages, the prospects for product optimisation are promising.”
The research team acknowledge the importance of facilities used in this research including RMIT’s Microscopy and Microanalysis Facility, the Melbourne Centre for Nanofabrication and Bio21 Proteomics Platform, and support from the ARC Research Hub for Australian Steel Manufacturing.
‘Apoptosis of Multi-Drug Resistant Candida Species on Microstructured Titanium Surfaces’ is published in Advanced Materials Interfaces (DOI: 10.1002/admi.202300314).
Authors are Dr Phuc Hoang Le, Dr Denver Linklater, Dr Arturo Aburto-Medina, Dr Shuai Nie, Dr Nicholas Williamson, Professor Russell Crawford, Dr Shane Maclaughlin and Distinguished Professor Elena Ivanova.
Story: Michael Quin