Optimisation has been one of the most active domains of modern mathematical research for over a century.
Optimisation has been one of the most active domains of modern mathematical research for over a century.
Optimisation has been one of the most active domains of modern mathematical research for over a century.
Optimisation encompasses a broad panorama of research agendas from the foundations of modern mathematical analysis and computation, to development of modelling and numerical optimisation tools used within industry today to solve challenging large scale problems with speed and reliability. Modern computational tools require fundamental theoretical developments both of a mathematical nature and from an algorithmic and complexity view point. Optimisation bridges applied mathematics, modelling and computing science.
Optimisation research is engaged in the development of fundamental mathematical theory for the creation of new optimisation techniques for the solution of challenging optimisation problems. We are actively engaged in the international efforts directed at the solution of fundamental challenges faced by the optimisation community. We are also committed to the promotion and dissemination of new knowledge via engagement with the local Australian mathematical community and the promotion of collaborations with industry and government organisations.
The members of our optimisation research actively collaborate with other Australian research centres focussed on optimisation and computation, in particular CARMA at the University of Newcastle and CIAO at Federation University Australia. We also have extended overseas collaborations, in particular in the US and in Europe.
RMIT Optimisation holds weekly research meetings (with connection available to external participants via Visimeet). We also organise optimisation workshops and post all materials related to the meetings.
A mathematical optimisation problem seeks feasible values for a set of decision variables, i.e. seeks to make decisions that satisfy a given set of constraints representing the feasibility of decisions as subject to real world factors, so as to either maximize or minimize a function of these variables which is known as the objective function (this measures the value we place on a set of decisions). An enormous range of practical problems can be formulated in these terms, ranging from the design of optimal controllers in engineering, to delivery of cancer radiation treatment, to extraction of the greatest value from open-pit mines, to best environmental management practices, football pools, efficient management of regional air traffic, resource allocation or project management and scheduling.
Advances in algorithms and optimisation technology resulting from mathematical research, and from closely related branches of computer science, have led to a revolution in the business world, with optimisation-based decision support tools now pervasive in large, complex organizations, and critical to their planning and operational activities. An indication of the significance of this development can readily be found in INFORMS, SIAM and the Optimisation Society publications. Mathematical optimisation has also expanded rapidly in recent years into new areas of science, medicine and engineering. Areas such as computational biology, renewable energy and the management of electricity networks, infrastructure security, are just a few of the frontier application areas driving exciting new developments.
Prospective Higher Degree by Research applicants should contact one of our academic or post-doc members to discuss supervision of a research project.
Acknowledgement of Country
RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nation on whose unceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and present. RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business - Artwork 'Sentient' by Hollie Johnson, Gunaikurnai and Monero Ngarigo.
Acknowledgement of Country
RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nation on whose unceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and present. RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business.